Go to contentGo to menuGo to searchGo to the news list

Micro et Nanomédecines Translationnelles

Main navigation

    Search

    Breadcrumb

    FP7_FORMAMP (2013-17)

    FP7_FORMAMP (2013-17)

    • Share this page on social networks
    • E-mail this page

      Send by mail


      Separated by coma
    • Print this page

    Coordinator : Dr Helena BYSELL

    Resistance to traditional antibiotics is a rapidly increasing problem that in a few years could make infections impossible to treat and bring the state of medical care back to the pre-antibiotic era from the beginning of the last century. Antimicrobial peptides (AMPs) have a huge potential as new therapeutics against infectious diseases as they are less prone to induce resistance due to their fast and non-specific mechanism of action. The aim of FORMAMP is to explore a number of innovative formulation and delivery strategies based on nanotechnology in order to improve the efficiency and stability of AMPs in clinical development. Functional delivery systems that can be applied directly on the infected site will be developed for treatment of infections in skin and burn wounds, as well as lung infections caused by Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Mycobacterium tuberculosis (MTB). Formulation and delivery strategies to prevent and treat biofilm formation related to these conditions will be developed. Different nanoformulation platforms, particularly promising for peptide delivery, controlled release strategies and technologies against proteolytic degradation of peptides will be evaluated in the project. These include lipid-based systems such as lipidic nanocapsules, polymer-based structures such as dendrimers and microgels as well as nanostructured mesoporous silica. The possibility to formulate the nanostructured materials into efficient drug delivery systems such as a topical spray or gel and pulmonary aerosol will be evaluated. The effect of nanoformulated AMPs will be evaluated with state-of-the art in vitro models and in vivo models. The results of this interdisciplinary project will generate efficient treatment strategies combatting one of the largest threats to our health care system today, reducing healthcare costs and expand the growth of European enterprises within the field of pharmaceutics and nanomaterials.

    more details...

    Project Leader